998 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

A Practical View of Software Measurement and
Implementation Experiences Within Motorola

Michael K. Daskalantonakis, Member, IEEE

Abstract— The purpose of this paper is to describe a prac-
tical view of software measurement that formed the basis for
a company-wide software metrics initiative within Motorola. A
multi-dimensional view of measurement is provided by identi-
fying different dimensions (e.g., metric usefulness/utility, metric
types or categories, metric audiences, etc.) that were considered
in this company-wide metrics implementation process. The defi-
nitions of the common set of Motorola software metrics, as well
as the charts used for presenting these metrics, are included. The
metrics were derived using the Goal/Question/Metric approach to
measurement. The paper distinguishes between the use of metrics
for process improvement over time across projects and the use
of metrics for in-process project control. Important experiences
in implementing the software metrics initiative within Motorola
are also included.

Index Terms— Implementation experience, in-process project
control, multidi I view of t, practical view of
measurement, process improvement, software metrics, software

metrics infrastructure.

I. INTRODUCTION

HE PURPOSE of this paper is to describe a practical

view of software measurement, that formed the basis for
a company-wide software metrics initiative within Motorola.
A software metric is defined as a method of quantitatively
determining the extent to which a software process, product, or
project posesses a certain attribute. This includes not only the
formula used for determining a metric value, but also the chart
used for presenting metric values, as well as the guidelines for
using and interpreting this chart (and metric) in the context of
specific projects.

To be practical, software metrics must be defined with their
intended use in mind. Goal-oriented measurement (i.e., the
identification of measurement goals and important charac-
teristics to be measured before defining the metrics) [1]-[3]
ensures such practicality because it provides not only metric
definitions, but also the context for making interpretations of
their values, so that engineers and managers are able to use
them for making decisions.

Several companies are beginning to realize the important
role that software metrics can play in planning and controlling
software projects, as well as improving software processes,
products, and projects over time. Such improvement results
in increased productivity and quality, and reduced cycle time,

Manuscript received October 1, 1991; revised August 1, 1992. Recom-
mended by R. Selby and K. Torii.

The author is with the Cellular Infrastructure Group, Motorola, Arlington
Heights, IL 60004.

IEEE Log Number 9203769.

all of which make a company competitive in the software
business. Although there are many examples of companies
beginning to use metrics in industry (e.g., [4]-[6]), some are
finding it a complex and difficult undertaking.

Results of an industry survey sponsored by Xerox and
Software Quality Engineering [7] indicate that fewer than 10%
classified it as positive and enthusiastic. In another survey
conducted by Howard Rubin and Associates (mentioned in
[8]), it is reported that two out of three measurement efforts
started, failed, or discontinued after two years. These experi-
ences indicate that the implementation of software metrics is a
very complex issue that involves several dimensions. All these
dimensions must be addressed through a practical view of
measurement in order to increase the likelihood of successfully
implementing software metrics within a company or project.

Section II of this paper provides a multidimensional view
of software measurement and identifies different ways that
software metrics can be used within software projects and a
company. Section III discusses the use of metrics for process
improvement over time, as well as the use of metrics for
in-process project control. Section IV provides the author’s
experiences from implementing a software merics initiative
within Motorola, in terms of the obstacles that were present
and how they were addressed, the cost involved in implement-
ing metrics, as well as the benefits obtained so far and expected
over the next years. The conclusion is in Section V.

II. A MULTIDIMENSIONAL VIEW OF METRICS

The purpose of this section is to describe the prereq-
uisites for successful metrics implementation and introduce
the dimensions that must be considered when designing and
implementing a successful metrics initiative. They should
be considered by the function tasked to implement such an
initiative.

It is important to understand that the likelihood of a success-
ful metrics implementation increases significantly if several
prerequisites are satisfied. These prerequisites specify [9]
that the following (preferably automated) systems must be
in place: a cost accounting system; a software configuration
management system; and a problem reporting/corrective action
system. These systems are considered prerequisites for metrics
implementation because their existence greatly facilitates any
metric data collection and analysis process. If these systems are
not in place, the software organization has higher priority items
that should be addressed before fully implementing metrics
(although a scaled-down metrics initiative may be possible).

0162-8828/92$03.00 © 1992 IEEE

DASKALANTONAKIS: A PRACTICAL VIEW OF SOFTWARE MEASUREMENT

Simple and precise definitions

Useful metrics

Cost effective

Fig. 1.

Sample characteristics of useful metrics.

Also, since metrics are usually used in conjunction with a
process that must be controlled and improved, documented
processes that are in use should be in place before starting
to define process control and improvement metrics. However,
some metrics can be defined to be independent of the process
used and in that case, there is no need to wait for a process
to be defined. There are cases where the existence of metrics
provides additional motivation to engineers and managers to
go back and define the software processes used in order to
improve them over time through the use of metrics.

The dimensions that must be considered when implementing
a metrics initiative include the metric usefulness/utility, metric
types or categories, metric audiences or users, metric user
needs, and the levels of metric application. These dimensions
are further described in the following subsections.

2.1. Metric Usefulness/Utility

There are several important characteristics that are associ-
ated with useful software metrics. Software metrics must be
(Fig. 1.

simple to understand and precisely defined in order to

facilitate consistency both in the calculation and the analysis

of metric values;

objective (as much as possible) in order to decrease the

influence of personal judgement to the calculation and

analysis of metric values;

cost effective in order to have a positive return on invest-

ment (the value of the information obtained must exceed

the cost of collecting the data, calculating the metric, and
analyzing its values); and

informative in order to ensure that changes to metric

values have meaningful interpretations (e.g., the fact that

the estimation accuracy of project effort increased should
imply that a better estimation technique was used).

2.2. Metric Types or Categories

Software metrics can be classified under different categories,
although it is not unusual that the same metrics belong to more
than one category. A classification of metrics based on their
intended use follows (Fig. 2).

Process metrics are those that can be used for improving the

software development and maintenance process. Examples

of such metrics include the defect containment effectiveness
associated with defect containment process (e.g., inspection
and testing), the efficiency of such processes, and their cost.

Product metrics are those that can be used for improving

the software product. Examples of such metrics include the

999

Process metrics

etric types or categories,

An example of how software metrics can be classified (based on
their intended use).

Fig. 2.

Software users

Senior Managers

Software Managers Metrics audiences or users

Software Engineers

oltware Process Engineers and

Software Quality Assurance

Fig. 3. Sample software metric audiences.

complexity of the design, the size of the source code, and
the usability of the documentation produced.

Project metrics are those that can be used for tracking
and improving a project. Examples of such metrics include
the number of software developers, the effort allocation per
phase of the project and the amount of design reuse achieved
by the project.

2.3. Metric Audiences or Users

There are different potential audiences of software metrics
and their primary interests in using metrics are also different
(Fig. 3).

Software users are interested in the quality and value of

the software products.

Senior Managers are interested in overall control and

improvement across projects in the business unit.

Software Managers are interested in control and improve-

ment of the specific software projects they manage.

Software Engineers are interested in control and improve-

ment of the specific software project activities and work

products in which they are involved.

Software Process Engineers and Software Quality As-

surance are interested in a cross-section of what the four

previous audiences are interested in (depending on whether
they are working at the business unit level, or the project
level).

2.4. Metric User Needs

A software metrics initiative must address the needs of all
these potential metric audiences and users by (Fig. 4):

defining metrics and obtaining consensus/acceptance by

the user community;

training metric users and providing consulting support for

implementation; and

1000

ear definitions wi
consensus/acceptance
ining and consulling
support

Fig. 4.

Important metric user needs that must be addressed.

Company / Business unit
Product group

Levels of metric application

Fig. 5.

Sample levels of metric application.

automating the data collection, analysis, and feedback
process.

2.5. Levels of Metric Application

Such an initiative must also account for the different levels
of measurement. Examples of such levels include (but are not
limited to) (Fig. 5) the following.

The company (or business unit) level, at which data across

several projects may be lumped together to provide a view

of attributes such as productivity, quality, and cycle-time
across projects.

The product group level, at which data across several

projects in the same product area may be lumped together

to provide a view of the same attributes, but within the
product group.

The project level, at which data within the project is tracked

and analyzed both in-process and post mortem in order to

plan and control the project, as well as to improve similar
projects across the business unit.

The component level, at which data within a component

(e.g., subsystem) of a project is tracked and analyzed for

managing the development of that component, as well as

improving its quality over time.

This section implies that a software metrics initiative must
be designed and implemented according to all of these levels
and dimensions.

III. SOFTWARE METRICS INITIATIVE IN MOTOROLA

There are several reasons for starting Motorola’s company-
wide software metrics initiative. Studies published indicated
to project participants and management, the usefulness of
metrics in improving software engineering and management
practices [21], [22]. Engineers and managers wanted to better
understand the software development process and be able to
determine necessary changes for productivity, quality, and
cycle time improvement. They realized that this can be ac-
complished by measuring both the software development
process and product, analyzing the metrics data collected, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

determining necessary changes that can lead to more sophis-
ticated techniques for developing and maintaining software.
Software managers and engineers have used software metrics
as a method for determining progress towards quantified
improvement goals, such as Motorola’s six sigma quality goal
of having no more than 3.4 defects per million of output units
from a project.

It was apparent from the start of the metrics initiative (based
also on observations from other companies) that software
metrics implementation is a complex issue. There are several
cultural and human issues that need to be addressed up front in
order to assure the success of such an initiative. There is also a
need to define and use software processes, focus on continuous
process and product improvement, set quantitative goals, and
measure the extent to which these goals are achieved. This
implies software engineer and manager discipline, as well as
acceptance of software measurement as an integral part of
the software development process. It also implies the creation
of an improvement mentality allowing presentation of data
that may indicate significant problems for a project, and
concentration on process improvement instead of evaluation
of developers.

In addition to these issues, there were also several technical
issues that needed to be addressed, such as the lack of
common software metrics that are well defined, guidelines for
data collection and interpretation, and tools for automating
the use of metrics. A Metrics Working Group (MWG) with
participation across Motorola’s business units was established
whose primary purpose was to define a minimal set of software
metrics to be used company wide for measuring and eventually
improving the quality of the developed software.

The Metrics Working Group has worked for three years
intensively to define a common set of software metrics, and
support the process of deploying the metrics within software
development groups. This common set of metrics is defined
in Section 3.1 and their use for tracking improvement over
time across projects is explained. Additional processes and
metrics were also defined by the Metrics Working Group (or
adapted from already existing best practices in industry), so
that software metrics are integrated within the process that they
attempt to improve. Examples of such metrics associated with
specific phases of the software development life cycle where
they can be used are included in Section 3.2 and their use for
in-process project control is explained. The Metrics Working
Group has also created and deployed (through appropriate
packaging with training and consulting activities) process
and metric definitions for the formal software review and
the software test processes using the Goal/Question/Metric
approach [1]-[3].

In addition to process improvement over time and in-
process project control, software metrics can also be used for
measuring customer satisfaction and feeding this information
to product designers, analyzing software performance and
improving it during software design and development, bench-
marking software development practices and results across
companies, business units, and projects, etc. However, this
paper focuses only on process improvement and in project
control.

DASKALANTONAKIS: A PRACTICAL VIEW OF SOFTWARE MEASUREMENT

3.1. Use of Metrics for Process Improvement over Time

The overall philosophy of the company-wide software met-
rics initiative in Motorola has been: Measurement is not the
goal. The goal is improvement through measurement, analysis,
and feedback. This implies that quantitative improvement
goals are identified and metrics data is not only collected,
but it is also analyzed for providing improvement feedback
to software engineers and managers. Senior management has
supported this objective and has made software measurement
a required practice by software development projects, as
specified in the Quality Policy for Software Development
(QPSD). This policy requires the use of metrics by software
projects in the following measurement areas:
delivered defects and delivered defects per size;
total effectiveness throughout the process;

* adherence to schedule;

* estimation accuracy;

« number of open customer problems;
* time that problems remain open;
 cost of nonconformance;

* software reliability.

After continuous debate within the Metrics Working Group
that lasted for about a year, the representatives of differ-
ent business units agreed on a common set of metrics that
addressed the measurement areas identified above. Software
productivity was identified as an additional measurement area,
and metrics were defined to address this area as well. The
primary audience selected for these metrics was senior man-
agement, and the metrics were intended to be used primarily
for tracking improvement over time, across projects. Although
the metrics defined were not perfect, it was decided that
it is better to start from a set of metrics addressing the
measurement/improvement areas identified, and improve these
metrics over time, instead of debating forever, trying to find
perfect metrics.

The following definitions of terms are used for describing
the metrics defined below.

Software problem: A discrepancy between a deliverable
product of a phase of software development and its docu-
mentation, or the product of an earlier phase, or the user
requirements. The problem status can be “open” (the problem
has been reported), “closed available” (a tested fix is available
to the customer), or “closed” (a tested fix has been installed
at the customer site).

Error: A problem found during the review of the phase
where it was introduced.

Defect: A problem found later than the review of the phase
where it was introduced.

Fault: Both errors and defects are considered faults.

Failure: The inability of a functional software unit to
perform its required function. A failure is caused by a defect
encountered during software execution (i.e., testing and oper-
ation). Problem reports are created as a result of observing a
software failure and when analyzed could result in identifying
the defect(s) causing the failure.

Released software: Software that has entered the phase of
beta test and operation.

1001

Line of code: A physical source line of code, excluding
lines that contain only comments or blanks. Lines of code are
units of source size. There are two different counts of source
size (total and delta). Total source size is the total size of the
released software. Delta source size is the size of the source
code added, deleted, and modified from the previous software
release.

By mapping the measurement areas identified in the QPSD
to improvement goals, and mapping these goals to corre-
sponding characteristics (stated in the form of questions), and
metrics, a simplified Goal/Question/Metric structure [1] was
developed. The goals identified were:

Goal 1: Improve project planning.

Goal 2: Increase defect containment,

Goal 3: Increase software reliability.

Goal 4: Decrease software defect density.

Goal 5: Improve customer service.

Goal 6: Reduce the cost of nonconformance.

Goal 7. Increase software productivity.

The questions and metrics defined were based on practical
considerations, such as the scope of the collected data (data
primarily from the development organization), and the control
over the reported problems (engineering perspective versus
customer). Software projects were encouraged to broaden these
definitions to take an end-to-end, customer view, and the
metrics evolved in this direction over time. Following are the
definitions of the common Motorola software metrics (in the
context of the goals and questions), as well as a reference to the
corresponding chart in Fig. 6 which is used for presenting the
metric values. The charts in Fig. 6 are known within Motorola
as “the 10-up software metrics charts.” Any data presented in
charts within this paper are only for the purpose of providing
examples, and should not be considered as representing actual
project data.

Goal 1: Improve Project Planning

Question 1.1: What was the accuracy of estimating the
actual value of project schedule?

Metric 1.1: Schedule Estimation Accuracy (SEA) (chart 9)

actual project duration

SEA = - . —
estimated project duration

Question 1.2: What was the accuracy of estimating the
actual value of project effort?
Metric 1.2: Effort Estimation Accuracy (EEA) (chart 9)

actual project effort

EEA = .
estimated project effort

Goal 2: Increase Defect Containment

Question 2.1: What is the currently known effectiveness of
the defect detection process prior to release?

Metric 2.1: Total Defect Containment Effectiveness (TDCE)

(chart 7)

TDCE =
number of pre-release defects

number of pre-release defects + number of post-release defects

1002 IEEE TRAN:

SACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

SOFTWARE (;::R';;{ENT PROCESS CHART2
QU AI'EIF’I‘Y (U‘? SIGMA) ES RELEASED SOFTWARE QUALITY
(IN SIGMA)
PP e 1000 .
500 - TRD otal eosnmtloe =
dluKAELOC 200 A S 39 —
1 N N K 1otal KAELOC 2.0}
100 =g H R
w T 19
g PRI AN YUY I | — o o
A REE RO sl m e TN
TMKARLOC ¢ - —cfect 1 S A W R
5 dela KAELOC —
2 (R IO B S 11 08 =y
0K O [O l I [[Ty
1 g K g l [&
1990 1991 19921993 19941995 o
In-Process Faults (IPF) metric and In—Process De- 6 sigma = 0.0034
fects (IPD) metric for the software released Total Released Defects (TRD) in the software
by a Motorola Division. of a Motorola Division.
CHART 3 CHART 4
CUSTOMER-FOUND DEFECTS POST-RELEASE PROBLEM
(IN SIGMA) REPORT ACTIVITY
D 1ot ! = TP =l © S i
T s ¥ ot oicnn S
iy L vor —a— L0
19 # of problems Ve e
= 200
D i — = g g o I I VI
; A B P)Y 9% OB AN
TUKARLC 5 e o o e e | 1) ,4.‘.,....
” [} [[N) 1 L v v () » :
b I T \ LM
S b Mean New Open Problems (NOP) and Total Open Prob
f ean New Open ems and To! n -
Cnstomcr;it:ubn:’ggiﬁs(i::;l)):’m the software lems (TOP) for the software of a Motorola Division.
CHART 5
POST-RELEASE PROBLEM
REPORT AGING
AOPe «gm @ vl fod
days per problem S BN BNE BN
ACP e 7 RS O B
days per problem 'Y RN IR ke
N II.A Y I
b et
0

s

Mean Age of Open Problems (AOP) and mean Age of Closed

Problems (ACP) for the s

@)

oftware of a Motorola Division.

Fig. 6. (a) Sample Motorola software metrics charts.

Question 2.2: What is the currently known containment ef-
fectiveness of faults introduced during each constructive phase
of software development for a particular software product?

Metric 2.2: Phase Containment Effectiveness for phase i
(PCEi) (chart 8)

PCEi =
number of phase i errors

number of phase i errors + number of phase i defects’

Goal 3: Increase Software Reliability

Question 3.1: What is the rate of software failures, and how
does it change over time?

Metric 3.1: Failure Rate (FR) (used at the project level only;
not part of the 10-up charts)

number of failures

FR = : T
execution time

Goal 4: Decrease Software Defect Density

Question 4.1: What is the normalized number of in-process
faults, and how does it compare with the number of in-process
defects?

Metric 4.1a: In-Process Faults (IPF) (chart 1)

IPF =
in-process faults caused by incremental software development

assembly-equivalent delta source size

DASKALANTONAKIS: A PRACTICAL VIEW OF SOFTWARE MEASUREMENT

CHART 6
COST TO FIX POST-RELEASE
PROBLEMS
ok
CFP e vadaa o]
e B RS
’“"::7;
° ot TS

Cost to Fix post-release Problems (CFP)
within.a Motorola Division.

1003

CHART 7

TOTAL DEFECT CONTAINMENT
EFFECTIVENESS

085

080

TRTTR TS

Total Defect Containment Effectiveness (TDCE)
for the projects of a Motorola division.

CHART 8 CHART 9
PHASE CONTAINMENT ESTIMATION ACCURACY
EFFECTIVENESS N
0 Gout=t Schedule mm® N B R
S —— A RS R
= HH B
3 ..muu.u ed, N e
] estimat Ay L]
e . Y] cful |
Phase Containment Effectiveness (PCE) for the N TN N T
constructive phases of projects released in the N 5 N
last twelve months within a Motorola Division. it e 52 s
Right: projects released in the last six months. Scbgd_u_le and' Effort Estimation Accl..lr?r:y (SEA and EEA) for
Left: projects released the prior six months. the initial of aM Division’s software projects.
CHART 10
SOFTWARE PRODUCTIVITY
m—.—.‘ Y
=1 B LRN KRS ERA RE!
- e]
dukarioc "/ R KRR B
i S E
N
LT
° Lo T T 00

Software Productivity (SP) total and delta for
the projects of a Motorola Division.

®)

Fig. 6. (b) Sample Motorola software metrics charts.

Metric 4.1b: In-Process Defects (IPD) (chart 1)

IPD =
in-process defects caused by incremental software development

assembly-equivalent delta source size

Question 4.2: What is the currently known defect content
of software delivered to customers, normalized by assembly-
equivalent source size?

Metric 4.2a: Total Released Defects total (TRD total) (chart

2)

number of released defects

TRDtotal = ; .
assembly-equivalent total source size

Metric 4.2b: Total Released Defects delta (TRD delta) (chart

2)

number of released defects caused by
incremental software development

assembly-equivalent total source size

TRDtotal =

Question 4.3: What is the currently known customer-found
defect content of software delivered to customers, normalized
by assembly-equivalent source size?

Metric 4.3a: Customer-Found Defects total (CFD total)

(chart 3)

number of customer-found defects

CFDtotal = - —.
assembly-equivalent total source size

1004

Metric 4.3b: Customer-Found Defects delta(CFD delta)
(chart 3)

number of customer-found defects caused by
incremental software development

assembly-equivalent total source size

CFDdelta =

Goal 5: Improve Customer Service

Question 5.1: What is the number of new problems that
were opened during the month?

Metric 5.1: New Open Problems (NOP) (chart 4)

NOP = total new post-release problems
opened during the month.

Question 5.2: What is the total number of open problems
at the end of the month?

Metric 5.2: Total Open Problems (TOP) (chart 4)

TOP = total number of post-release problems that

remain open at the end of the month.

Question 5.3: What is the mean age of open problems at
the end of the month?

Metric 5.3: (Mean) Age of Open Problems (AOP) (chart 5)

AOQP = (total time post-release problems remaining
open at the end of the month have been open)/
(number of open post-release problems
remaining open at the end of the month).

Question 5.4: What is the mean age of the problems that
were closed during the month?

Metric 5.4: (Mean) Age of Closed Problems (ACP) (chart

5)

total time post-release problem

ACP = closed within the month were open

number of post-release problems closed within the month”

Goal 6: Reduce the Cost of Nonconformance

Question 6.1: What was the cost to fix post-release problems
during the month?

Metric 6.1: Cost of Fixing Problems (CFP) (chart 6)

CFP = dollar cost associated with fixing
post-release problems within the month.

Goal 7: Increase Software Productivity
Question 7.1: What was the productivity of software devel-
opment projects (based on source size)?

Metric 7.1a: Software Productivity total (SP total) (chart
10)

assembly-equivalent total source size

SPtotal =
software development effort

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

Metric 7.1b: Software Productivity delta (SP delta) (chart
10)
assembly-equivalent total source size

SPdelta =
et software development effort

These metrics are applicable primarily at the product group
and business unit level and selected subsets are reported
monthly (as part of quality reviews and reports) to corporate
and senior management. The quality reports are created by
the Software Quality Assurance groups within business units
based on data collected from projects within these business
units. The set of common Motorola software metrics has
evolved over time, as feedback was obtained from metrics
users. A metrics reference document defining these common
metrics, including concrete guidelines for their interpretation
and usage has been formally accepted by company-wide
committees and is being deployed across the company, with
many projects already using these metrics. This document is
accompanied by an executive summary for a brief overview
of the metrics.

After defining the common set of metrics, overall quanti-
tative quality improvement goals for software processes and
products were established. These goals have been stated using
Motorola’s six sigma quality concept as applied to software.
Charts 1 and 2 of the 10-up charts are used for tracking these
process and product quality goals. In addition to these goals,
software projects and business units were encouraged to define
their own improvement goals using the rest of the defined
common metrics, based on where their current baseline (i.e.,
the range of achieved values) is, with respect to these metrics.

In addition to reporting the common software metrics,
individual software projects conduct further analysis of metrics
data for identifying areas for improvement. Defect data has
been found quite useful in this process, because if classified
by project phase introduced and by cause, it can lead to actions
resulting in significant process and product improvements [13].
Estimation accuracy metrics have helped several projects to
define and improve the techniques used for estimating software
project schedule, effort, and quality. Software problem-related
metrics have also helped projects to track the responsiveness
to the needs of those reporting them, and make informed
decisions about allocating resources for fixing them versus
resources for new software development.

3.2. Use of Metrics for In-Process Project Control

The purpose of this section is to provide examples of how
software metrics can be used in-process for project control.
In-process project control is defined as the ability of software
engineers and managers to make informed decisions regarding
the current and projected status of a project and take corrective
action if necessary. Much of the data collected for the purpose
of reporting the 10-up software metric charts, described in the
previous section for process improvement, can also be used
while the project is still in progress (using different charts)
in order to control that project. However, additional refined
data is necessary in order to use metrics for in-process project
control. Representative examples (but not an exhaustive list) of
such use available from industry and piloted/used by projects

DASKALANTONAKIS: A PRACTICAL VIEW OF SOFTWARE MEASUREMENT

Timel yo1 | Fo1| mo1| a91 | morf yo1] o1 [asn [s91 [091] o1 [o1
PLANNING i

Phases’

RE(TS| s
DESIGN cedeceprsnte
CODING R e] o
 TESTING <
[MAINTENANCE

ween Initially planned
—— Actual so far
« = = Additional projected

Now = May 9}

Fig. 7. A chart indicating the progress of planned activities for a project.

within the company follow. The data in the charts are only for
providing examples, and should not be considered as actual
data from projects.

3.2.1. Life-Cycle Phase and Schedule Tracking Metric: The
purpose of the chart in Fig. 7 is to track the progress of life-
cycle phase/schedule progress. It indicates a sample use for
tracking the current status of a software project. Management
is informed that at the current date (May 1991), the project
is supposed to be done with design, and coding should have
already started. However, only a portion of the design has
been completed so far. The project plan is revised based on
the actual data so far, and the additional projected time to
complete a phase (or milestone) is plotted. The collection of
these charts generated throughout a project can provide also
important historical metrics data for software managers. The
activities included in the Gantt chart can be presented at a
more refined level, depending upon the audience of the chart.

3.2.2. Cost/Earned Value Tracking Metric: The purpose of

the chart in Fig. 8 [14] is to allow a manager to track in-
process the following cost-related quantities (and update the
project plan as necessary).
1) Estimated total cost of the project (estimated at 1000
KS$ initially, revised to 1200 K$ at week 30, and revised
again to 1350 K$ at week 60).
2) Budgeted cumulative cost of the project.
3) Actual cumulative cost of the project.
4) Earned value of the project (the sum of the budgeted cost
for the activities already completed by the project). This
value is a good indicator of the current project status.
This metric is important because it summarizes the actual
progress of the project (what portion has been completed) and
how that relates to the project budget/cost. Tracking these
quantities allows the software manager to make informed
decisions regarding the progress and viability of the project.
3.2.3. Requirements Tracking Metric: The purpose of the
chart in Fig. 9 is to track in-process at the project level
requirement changes and determine their impact on the project.
Such requirement changes include addition of omitted re-
quirements, and fixes of incorrectly captured requirements.
Although enhancements to the software functionality that were
not part of the initial scope of the project could also be
considered as requirement changes, these changes should be
tracked separately using another chart similar to Fig. 9.

If the manager using Fig. 9 determines that there is an un-
usually high number of requirement changes in the early stages
of the requirement phase, the major cause of such changes can

1005
Projectcost 1
anksy 10

1400 L —

B Estimated rotal cost 7|
1200 Actoal
1000 — — Projected
800
600
400 |
200

o T T T T T T 1
0 20 30 40 50 6 0 8 %
Weeks since project started —> Now Projected end

Fig. 8. A chart for tracking the earned value of the project (relative to the
budgeted and actual cost).

Number of require-

ment changes
0 - —— Cumulative
w0 7 /s
g Actual
0 / — — Projected
0 -
w A L 8
~— -
0 g A) icremenw
T T T T T T T
0 18 20 30 4 50 6 70 80 90
Weeks since project staried —> Now Projected end
Fig. 9. Number of changes to the requirements document over time for a
project.
Number of 50
changes
%0
30
2

Marketing Customer EogineersManagement Other
causefsource of changes

Fig. 10. Pareto chart for identifying major c ources of requi
changes in order to take corrective action (in-process).

be determined in-process. This will allow corrective action to
be taken, so that the changes to the requirements are minimized
throughout the remaining part of the project. Fig. 10 is an
example of a Pareto chart that can be used for this purpose.
If marketing is identified as a major cause of requirement
changes for adding omitted requirements or fixing incorrect
requirements, the manager can enhance the interface with
marketing and customers, and possibly use prototyping for
ensuring that the required software functionality is understood
and captured correctly.

3.2.4. Design Tracking Metric: Software managers are also
interested in tracking the progress of designers in designing
the software product. Fig. 11 can be used for this purpose. It
tracks the cumulative number of requirements traceable into
the design, over time. The assumption is that individual re-
quirements are named so that they can be referenced. Another
assumption is that a traceability matrix is used to indicate
what requirements have already been addressed in the design
created so far.

1006

(cumulative # of requirements)
120

100

Written requiremeni

weeks in design

Fig. 11. Design creation progress metric for a software project.

The chart is used while the design is still under development
for determining how complete the design is, and how fast it is
created (design cycle-time). If the activity of design creation
does not progress as fast as initially expected, the software
manager determines the impact on schedule of subsequent
phases, and the project plan is updated. Ideas on measuring
software design complexity are included in [10] and [19].

3.2.5. Fault-Type Tracking Metric: The fault type tracking
metric is used for analyzing code faults found with the
objective to prevent the introduction of additional code faults.
Once software coding has started and some of the modules
have been implemented and are being reviewed and unit
tested, code fault data starts to accumulate. This data can
be analyzed in-process, while coding for additional modules
progresses, in order to provide feedback to the coders of
such modules regarding types of faults they should avoid
introducing. Suppose that a software project uses Ada as the
programming language, and the following cause categories for
classifying code faults.

Cl — Incorrect or missing initialization of a variable.

C2 — Incorrect interface; call of an operation with the
wrong parameters.

C3 — Logic problem, the control flow is wrong, the
computation of a value is wrong.

C4 — Error handling problem, exception handled incor-
rectly, the operation has no recovery mechanism
when an incorrect input is encountered.

C5 — The definition of a variable is incorrect, the fields
of records are incorrectly defined

C6 — Other.

Fig. 12 is an example of a Pareto chart that can be created
using these cause categories to classify code faults. The project
participants identify C3 as the most frequently occurring type
of code fault (so far), followed by C1. The recommendation
is given to the coders working on the rest of the software
modules to pay additional attention to the correctness of
control flow, computation of values, and explicit initialization
of all variables used within their modules. Tools can also be
investigated that support the coders in their task by providing
a graphical view of their modules, or prompting the coder for
initializing any variable which is used without having been
initialized yet.

Many additional metrics can be used in the coding phase for
in-process project control (several of them automated through
commercially available tools). For example, modules with high

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

NUMBER OF CODE FAULTS INTRODUCED SO FAR
(BY CAUSE)

Fig. 12. Pareto chart for identifying what type of code faults is occur-
ring most frequently, so that coders of additional modules can avoid their
introduction in such modules.

USE OF A RAYLEIGH CURVE FOR PROJECTING FAULT RATES

60
faults per month

0 -
2 345 67 8 9 10111213141516
Months since starting the project —> Now

Fig. 13. Fault finding rate over the life-cycle of a software project.

cyclomatic complexity [15] can be identified, and the manager
can allocate additional resources for reviewing and unit testing
these modules, or even rewrite them if they are unnecessarily
complex.

3.2.6. Remaining Defects Metric: The chart in Fig. 13 [16]
can be used in conjunction with a technique for estimating
the number of faults remaining in a software project. This
technique assumes that the fault finding rate for a software
project has the shape of a Rayleigh curve that can be repre-
sented in the form of an equation. This equation provides the
number of faults per month as a function of several known (or
estimated) parameters from the project. A key parameter that
must be estimated (based on historical fault data) is the total
number of faults expected to be found over the life-cycle of
the software product.

In the example of Fig. 13, if the software manager has
data from the first months into the project, the Rayleight
curve (and its corresponding equation) can be used for the
purpose of projecting the fault finding rate over the remaining
months of the software life-cycle. This fault finding rate can
be used to project the number of faults to be found within a
specified number of months. In this example, month 8 may
correspond to the time that integration testing starts for the
software project. Using the data so far (bars 1-7), and through
fitting it in a Rayleigh curve, the projected remaining number
of defects to be found in the software project can be estimated
(based on the number for months 8-16).

3.2.7. Review Effectiveness Metric: The review effective-
ness metric can be used to track review effectiveness and
improve reviews and product quality over time. A control chart

DASKALANTONAKIS: A PRACTICAL VIEW OF SOFTWARE MEASUREMENT

Upper lisnit

25

Lower limit

CR1 CR2 CR3 CR4 CRS CR6 CR7 CR8

Fig. 14. Error density of source code reviewed within the project (or similar

projects in the Division).

can be used in-process for identifying any potential problems
with the review (inspection) process or the product reviewed.
Fig. 14 is an example of such a chart, indicating the error
density of source code reviewed so far within the project (or
within similar projects in the Division) {17]. CRi indicates
code review i. By using this chart in-process, the software
manager determines that the review process used in CR5 must
be examined further (by talking to the reviewers participating
in the process). If the review process steps were followed, and
the right people participated, the data for CRS indicates that
the quality of the code reviewed was relatively high. If the
review process steps were not followed, and the right people
did not participate as reviewers, it is an indicator that additional
errors may exist in the code, and an additional review may be
necessary.

By examining the same chart and attributes (in-process) for

CR8, the software manager can make the following decisions.
If the review process steps were not followed or the right
people were not among the reviewers, an additional review
and/or rewrite may be necessary for the code reviewed.
However, if the process steps were followed and the right
people were among the reviewers, most of the errors are likely
to have been found. If the code reviewed was critical for the
whole software product functionality, then a rewrite may be
necessary (due to the high error density; fixes to errors found
may have introduced additional faults in the code).
3.2.8. Problem Severity/Priority Tracking Metric: The prob-
lem severity/priority tracking metrics are used to track progress
of fixing defects described in problem reports found in testing
and make software release decisions. Total Open Problems are
tracked overtime for problems of different severities (and/or
priorities), so that the manager is able to determine whether
or not major problems are being fixed, and whether or not
the software project is getting closer to releasing the product,
based on the release criteria used. An example of such release
criteria for a large project may be that at release time all
severity 1 (i.e., crash causing) and 2 (i.e., major functionality
affected) problems found so far should be closed. Also, that no
more than five problems of severity 3 (i.e., minor functionality
affected) should exist, and no more than 15 problems of
severity 4 (i.e., cosmetic) should exist in the software, all
these problems will be communicated to the customers. Fig.
15 can then be used for making release decisions, in addition
to tracking the progress of problem fixing activities (the three
bars per severity correspond to the last three weeks before the
data is reported).

1007

TRACKING THE PROGRESS OF PROBLEM FIXING ACTIVITIES
300

Sevl Sev2 Sev3 Sevd

Fig. 15. Total open problems for the past three weeks of system testing for a
software project.

TRACKING THE PROGRESS OF PROBLEM FIXING ACTIVITIES
#of daysopen o0

Prior 1 Prior 2 Prior 3 Prior 4

Fig. 16. Age of Open Problems for the past three months of system testing
for a software project.

Fig. 16 can also be used by the software manager in-
process for tracking the Age of Open Problems metric by
priority level, prioritizing resource allocation for problem
fixing activities. If the age of priority 1 open problems is high,
or is not dropping significantly over time, testing is disrupted
(because the software crashes and tests cannot be executed).
The manager can allocate the necessary resources for fixing
such problems and is able to visualize what the impact is by
examining Fig. 16.

An additional use of severity (and/or priority) data associ-
ated with problem reports and defects found in testing is to
create a list of severity 1 and 2 defects found so far, and have
a meeting with the designers and coders in order to identify
where else in the software these same defects may exist. The
output of this meeting can be used for fixing additional defects
identified through this process, without waiting for testing (or
the customers) to find them first.

In addition to the techniques discussed in this section, the
Failure Rate metric can be used (in conjunction with a software
reliability mode] {18]) for determining the current reliability
level of the software and making release decisions. Also
[20] provides additional examples of tracking quality-related
attributes from a Software Quality Assurance perspective.

IV. EXPERIENCES FROM IMPLEMENTING
MOTOROLA’S SOFTWARE METRICS INITIAVE

4.1. Software Metrics Infrastructure

Implementing a company-wide software metrics initiative
can be a long term process. However, the benefits obtained for
the company are certainly worth this effort. It was understood
early in the process of implementing this initiative that there
is a need for a software metrics infrastructure. A software

1008

metrics infrastructure is what needs to be put in place for he
purpose of facilitating metrics implementation within business
units. This consists of working groups with participation
across the company (e.g., the Metrics Working Group), the
deliverables, training workshops on metrics, tools automating
metrics, consulting support for metric implementation within
projects, etc. These items are further explained below.

In addition to the Metrics Working Group, a Metrics Users
Group (MUG) has been established for sharing user expe-
riences of implementing software metrics in projects. The
Metrics Users Group has representation across business units,
meets quarterly, shares experiences regarding the use of tools
to automate metrics, and organizes demos of such tools. The
group is also involved in organizing an Annual Software
Metrics Symposium within the company.

Additional activities and outputs that are part of the software
metrics infrastructure established by the Metrics Working
Group follow.

Clarifications of metric definition, interpretation, and use
are provided by the Metrics Working Group during its
regular meetings (the group meets twice a quarter since
1988), and they are “packaged” as part of the software
metric documentation and training material for dissemi-
nation to metric users.

In order to address the “training” and “consulting support”
dimensions of metrics implementation, a two-day training
workshop on software metrics has been developed and has
been taught across the company in the past two years.
Hands-on consulting activities by the instructor follow
the training sessions if requested by the workshop partic-
ipants. This has been found a very effective mechanism
of software technology transfer.

In order to address the “automation” dimension of metrics
implementation, requirements for an automated metrics
data collection, analysis, and feedback system were also
created by the Metrics Working Group and were provided
to tools groups involved in automating software metrics.
Criteria for evaluating metrics tracking systems were also
created for facilitating the process of selecting commer-
cially available metric tools. A list of metric tools that
exist within the company or are available form industry
was created and disseminated to interested metric users.
Support for further analysis of collected metric data has
been provided to metric users through generic defect clas-
sification schemes and examples of using these schemes
for creating process improvement recommendations.

* The Defect Prevention Process [13] has been recognized
as an effective mechanism to ensure that process im-
provement is achieved through defect data analysis. This
approach has been championed by the MWG and several
projects have started using this approach.

Guidelines to interested business units for creating a
function responsible for implementing software metrics
are also available and used. As any other activity, if
no function is identified with the task of implementing
metrics it is almost certain that it will not happen.

A method for assessing software measurement technology
[11] has been created and it is used for providing feedback

.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

to projects about priority items that will further support
metrics implementation.

* Customer satisfaction measurement through surveys (from
a software perspective) is also encouraged through output
of the Metrics Working Group.

4.2. Additional Implementation Experiences

An important lesson learned from the application of soft-
ware measurement is that it is better to start from a set of
metrics addressing important improvement areas, and evolve
these metrics over time, instead of debating forever, trying
to find perfect metrics. Another lesson is that as engineers
and managers start using metrics, they realize the potential
benefits of such use, and they start investigating additional
ways to obtain even more benefits. The initial charts defined
for presenting the common set of metrics were targeted toward
senior management and the data presented was dependent on
post-release data (primarily due to the need to minimize the
cost associated with data collection). These charts are useful
for providing an overview of the software quality status, and
senior management has used them to track trends over time,
as well as for benchmarking purposes.

Software engineers and managers who started using these
charts expanded the use of metrics for in-process project
control and feedback. As metrics data is collected within the
software development process, the data should be analyzed in
order to determine current project status and make projections
of estimated status for the next phases of the project. This use
within the project provides timely value to the engineers and
software managers involved in the project. In addition to the
initial 10-up software metric charts, in-process charts were
defined and are used within software projects as explained in
Section 3.2

In addition to the in-process charts, the Metrics Working
Group has created process and metric definitions for the formal
software review, and the software test processes. The metrics
defined for controlling and improving the software review
and test processes were developed through the application
of the Goal/Question/Metric approach which was found very
useful. The process and metric definitions are appropriately
packaged in order to address the needs of different audiences,
and training material has been developed and taught for the
purpose of transferring this technology and ensuring its use
by the product groups. A recent survey of software engineers
and managers conducted indicates that a very high percentage
(67% of those surveyed) use the software review package
which was deployed by the Metrics Working Group over the
last three years. Additional process/metrics packages will be
investigated for processes such as the software design process
and metrics for improving this process.

There have been several requests over time from metrics
users across the company for a centralized location where
metrics data can be stored and compared to data from other
projects. However, the approach taken was that a metrics
initiative is more manageable when it is initiated by en-
couraging localized (decentralized) data storage, analysis, and
feedback, so that the data is close to its source. It makes

DASKALANTONAKIS: A PRACTICAL VIEW OF SOFTWARE MEASUREMENT

more sense to use data when the context for the projects is
known (e.g., products within a product group), as opposed to
using data from projects in different product groups, projects
of different size and complexity, etc. This is the reason why in
addition to any metric data collected, data regarding the project
from which this data was obtained should also be collected,
stored, and used for analysis purposes. Decentralized databases
storing data from local projects could be connected once the
initiative is well established for providing benchmarking data
to interested projects across the company.

A software metrics initiative should emphasize as its initial
stages that the engineers and managers involved in the project
are the best people to analyze the collected data, because they
have expertise in the project domain and can interpret what the
data indicates. An external consultant who has expertise in data
analysis for process improvement and project control can help
project participants to initiate such activities, and document
some examples of how to do data analysis. It is best that
this consultant be involved early in the project so that useful
metrics are selected and the mechanisms are put in place to
collect valid data and analyze them for improvement. Once this
is done for a couple of projects, the project participants should
take over, especially since the resources of software metric
experts are limited (there is only a limited number of experts
in this area that is available to date). The project participants
should be able to champion data analysis and feedback once
the metrics consultant has initiated these activities within the
product group or business unit.

Another commonly found request to be expected when
implementing software metrics is to pick only one metric to be
used in a project, so that the cost is minimal. However, such
use of a metric can be misleading, because it is really a set of
metrics that should be tracked and analyzed in order to obtain a
more accurate picture of several important attributes regarding
a project or organization. If only one metric is used, projects
can manage to optimize the values of that metric (indicating
positive results). However, these projects may have significant
problems that are not obvious by examining a single metric.

There is a cost involved when implementing a software
metrics initiative. There are approximately eight participants
present in the Metrics Working Group meetings (twice a
quarter). There are also about 15 people present in the Metric
Users Group meetings (quarterly). These people are involved
at least on a part time basis within their organizations in
implementing software metrics. Cost is also involved in terms
of implementing software metric tools, but it can be minimized
by avoiding duplication of effort.

There is an example within a Motorola Division where the
resources used were 3 persons per year for approximately 350
software engineers (less than 1% of resources). In an example
from another Division, the resources used were (.75 person-
years per year for approximately 70 engineers (about 1% of
the resources). Cost associated with post-release metric data
collection has been insignificant compared to the benefits. The
cost associated with in-process metric data collection can be
higher, but such cost can be minimized through automation.
In general, the overall cost is acceptable and justified. The
benefits obtained so far through quality, productivity, and

1009

cycle-time improvement (which are expected to continue in
the future), are well worth the investment made.

There are several additional benefits that have been obtained
so far from implementing software metrics. People have
started thinking more seriously about software process and
quality. The data has helped projects understand the extent
of the problems they were facing and motivate them to
improve. The metrics have helped establish local baselines
(i.e., ranges of achieved data values), and focus on actions
with quantitative results. There are cases of significant quality
and productivity improvements due to implementing several
software engineering practices, including metrics.

For example, the focus within a Motorola Division on im-
proving software quality (and tracking results through metrics)
has achieved 50X reduction in released software defect density
within 3.5 years. However, it is important to understand that
presenting the 10—up software metric charts did not improve
quality by itself. It is the quality initiative taken as a result of
analyzing the data in the charts that made the difference.

There are also many indirect benefits from implementing
software metrics, including cases where the use of metrics has
helped to improve ship-accpetance criteria, and schedule esti-
mation accuracy. Software development groups are expected
to learn from their mistakes from previous projects (through
post-mortem analyses) and take action to avoid them. It is
also expected that as a result of improving software qual-
ity, there will be significant improvement in Total Customer
Satisfaction. Another long range benefit expected (which has
been actually achieved so far within Motorola) is significant
cost reduction due to improved quality. This results from
reduced rework and the use of resources for new software
development instead of fixing problems. In addition to cost
reduction, reduced cycle time is also expected.

Software metrics is only one of the initiatives taken in the
area of software quality. Additional initiatives include the use
of a Quality System Review for software, Senior Management
Forums for software, Software Engineering Institute assess-
ments, software engineering education, technology transfer,
and benchmarking/use of best practices. Motorola has been
awarded the First Malcolm Baldrige National Quality Award
in 1988 for its successful efforts and results on improving
quality in all aspects of its business.

V. CONCLUSION

By addressing the areas discussed in this paper, Motorola
has been successful in the implementation of a company-
wide software metrics initiative with minimum resources. The
level of expertise in using metrics varies across software
development projects, but increases over time. However, addi-
tional work is necessary for ensuring that the software metrics
initiative is institutionalized across all software development
projects. Results from the use of metrics (documented in
the proceedings of the Annual Software Metrics Symposium)
indicate several examples where benefits have been achieved.

It is important to remember that metrics can only show
problems and give ideas as to what can be done. It is the
actions taken as a result of analyzing the data that bring the

1010

results. This is the reason why it is critical for metrics users
to understand that measurement is not the goal. The goal is
improvement, through measurement, analysis, and feedback.

ACKNOWLEDGMENT

Motorola’s Software Process Engineering Group (SPEG)
within Software Research and Development (SRD) has cham-
pioned the use of metrics across the company over the last
four years. The work presented in this paper was done while
the author was working in that group. The author would
like to acknowledge the contribution to this work by many
Motorolans who participated in the Software Quality Sub-
committee (SQSC) of the Software Engineering Technology
Steering Committee, and its Metrics Working Group over
time. All these people have been significant contributors
ensuring that software metrics are used for driving software
process and product improvement over time. The author would
like to recognize explicitly the contributions of Dr. R. H.
Yacobellis (Manager of the Software Process Engineering
Group) in supporting the metrics initiative from a management
perspective. Also, Dr. V. R. Basili (Professor of Computer Sci-
ence, University of Maryland at College Park) who provided
consulting support to the Metrics Working Group and ensured
a continuous focus on creating output that is of value to its
customers (i.e., metric users across Motorola).

REFERENCES

[1] V.R. Basili and D.M. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Trans. Software Eng., vol. SE-10, pp.
728-738, 1984.

[2] V.R. Basili and H. D. Rombach, “Tailoring the software process to
project goals and environments,” in Proc. Ninth Int. Conf. Software
Engineering, 1987.

, “The TAME project: Towards improvement-oriented software
environments,” IEEE Trans. Software Eng., vol. SE-14, pp. 758-773,
June 1988.

[4) S.L. Pfleeger, J.C. Fitzgerald, and A. Porter, “The CONTEL software
metrics program,” in Proc. First Int. Conf. Applications of Software
Measurement, Nov. 1990.

[5] F.E. McGarry, “Results of 15 years of measurement in the SEL,” in
Proc. Fifteenth Annual Software Engineering Workshop, NASA/Goddard
Space Flight Center, Nov. 1990.

[6] R. B. Grady and D.L. Caswell, Software Metrics: Establishing a

Company-Wide Program. Englewood Cliffs, NJ: Prentice Hall, 1987.

B. Hetzel, “The software measurement challenge,” in Proc. First Int.

Conf. Applications of Software Measurement, Nov. 1990.

G. Miluk, “Cultural barriers to software measurement,” in Proc. First

Int. Conf. Applications of Software Measurement, Nov. 1990.

F.J. Buckley, “Rapid prototyping a metric program,” in Proc. First Int.

Conf. Applications of Software Measurement, Nov. 1990.

[3]

7

8

e =

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18, NO. 11, NOVEMBER 1992

(10}

[11]

, “Rapid prototyping a metrics program,” in Proc. First Int. Conf.

Applications of Software Measurement, Nov. 1990

V.R. Basili and D.H. Hutchens, “An empirical study of a syntactic

complexity family,” IEEE Trans. Software Eng., vol. SE-9, pp. 664-672,

1983.

M.K. Daskalantonakis, V.R. Basili, and R.H. Yacobellis, “A method

for assessing software measurement technology,” Quality Engineering

J. American Society for Quality Control, vol. 3, 1990-91.

|13} C. Jones, Applied Software Measurement-Assuring Productivity and

Quality. New York: McGraw-Hill, 1991.

R.G. Mays et al., “Experiences with defect prevention,” IBM Syst. J.

vol. 29, 1990.

D. Youll, Making Software Development Visible.

Series in Software Engineering Practice, 1990.

[16] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering
Metrics and Models.Benjamin/Cummings, 1986.

[17) L. Putnam, Quantitative Software Management (QSM) Approach.
McLean, VA: Quantitative Software Management, 1990.

[18] J. Kelly and J. Sherif, “An analysis of defect densities found during soft-
ware inspections,” Fifteenth Annual Software Engineering Workshop,
Goddard Space Flight Center, Greenbelt, Maryland, Nov. 1990.

[19] J.D. Musa, A. lannino, and K. Okumoto, Software Reliabil-

ity-Measurement, Prediction, Application. New York: McGraw-Hill,

1987.

D. Card and R. Glass, Measuring Software Design Complexity. Engle-

wood Cliffs, NJ: Prentice Hall, 1990.

B. Glick, “An SQA quality tracking methodology,” in Proc. Int. Conf.

Software Maintenance,Nov. 1990.

V.R. Basili and R.W. Selby, “Comparing the effectiveness of software

testing strategies,” Univ. Maryland, College Park, Tech. Rep. TR-1301,

May 1985.

B. W. Boehm, “Understanding and controlling software costs,” IEEE

Trans. Software Eng., vol. 14, Oct. 1988.

[24] J. Brian Dreger, Function Point Analysis.
Prentice-Hall, 1989.

{12]

[14]

{15] New York: Wiley

[20]
121]

[22]

(23]

Englewood Cliffs, NJ:

Michael K. Daskalantonakis (M’88) received the
Bachelor of Science degree in computer engineering
from the University of Patras, Patras, Greece, in
1985, and the Master of Science in computer science
from the University of Maryland, College Park, in
1988.

He has worked in the past as a computer pro-
grammer for IBM Corporation, a research assistant
at the University of Patras in the ESPRIT project
GRASPIN, and a research assistant at the University
of Maryland in the TAME project. He joined Mo-
torola, Inc. in July 1988. He worked within Corporate Software Research and
Development in the area of software process engineering and measurement for
improvement. He has been the champion of software measurement technology
within Motorola. Additional areas of significant contribution include research,
training, and consulting in SEI assessments, formal software reviews, Quality
System Review, and software testing. He is currently a Lead Engineer in
the EMX 2500 product area within Motorola’s Cellular Infrastructure Group.
He provides hands-on support for process and metrics implementation within
software projects. He has published several papers on selected software
engineering topics and served as a panelist at metrics conferences.

Mr. Daskalantonakis is a member of the ACM.

